python基础
list
Python内置的一种数据类型是列表:list。list是一种有序的集合,可以随时添加和删除其中的元素。
比如,列出班里所有同学的名字,就可以用一个list表示:
'Michael', 'Bob', 'Tracy'] classmates = [ |
tuple
另一种有序列表叫元组:tuple。tuple和list非常类似,但是tuple一旦初始化就不能修改,比如同样是列出同学的名字:
'Michael', 'Bob', 'Tracy') classmates = ( |
dict
Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。
举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:
如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:
'Michael': 95, 'Bob': 75, 'Tracy': 85} d = { |
set
set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。
要创建一个set,需要提供一个list作为输入集合:
1, 1, 2, 2, 3, 3]) s = set([ |
函数的参数
- 位置参数
def power(x, n): |
power(x, n)
函数有两个参数:x
和n
,这两个参数都是位置参数,调用函数时,传入的两个值按照位置顺序依次赋给参数x
和n
。
- 默认参数
def power(x, n=2): |
设置默认参数时,有几点要注意:
一是必选参数在前,默认参数在后,否则Python的解释器会报错(思考一下为什么默认参数不能放在必选参数前面);
二是如何设置默认参数。
当函数有多个参数时,把变化大的参数放前面,变化小的参数放后面。变化小的参数就可以作为默认参数。
- 可变参数
def calc(*numbers): |
定义可变参数和定义一个list或tuple参数相比,仅仅在参数前面加了一个*
号。在函数内部,参数numbers
接收到的是一个tuple,因此,函数代码完全不变。但是,调用该函数时,可以传入任意个参数,包括0个参数。
Python允许你在list或tuple前面加一个*
号,把list或tuple的元素变成可变参数传进去:
1, 2, 3] nums = [ |
*nums
表示把nums
这个list的所有元素作为可变参数传进去。这种写法相当有用,而且很常见。
- 关键字参数
而关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。
def person(name, age, **kw): |
'Bob', 35, city='Beijing') person( |
'city': 'Beijing', 'job': 'Engineer'} extra = { |
**extra
表示把extra
这个dict的所有key-value用关键字参数传入到函数的**kw
参数,kw
将获得一个dict,注意kw
获得的dict是extra
的一份拷贝,对kw
的改动不会影响到函数外的extra
。
- 命名关键字参数
如果要限制关键字参数的名字,就可以用命名关键字参数,例如,只接收city
和job
作为关键字参数。这种方式定义的函数如下:
def person(name, age, *, city, job): |
和关键字参数**kw
不同,命名关键字参数需要一个特殊分隔符*
,*
后面的参数被视为命名关键字参数。
'Jack', 24, city='Beijing', job='Engineer') person( |
如果函数定义中已经有了一个可变参数,后面跟着的命名关键字参数就不再需要一个特殊分隔符*
了。
参数组合
在Python中定义函数,可以用必选参数、默认参数、可变参数、关键字参数和命名关键字参数,这5种参数都可以组合使用。但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参数、命名关键字参数和关键字参数。
def f1(a, b, c=0, *args, **kw): |
最神奇的是通过一个tuple和dict,你也可以调用上述函数:
1, 2, 3, 4) args = ( |
所以,对于任意函数,都可以通过类似func(*args, **kw)
的形式调用它,无论它的参数是如何定义的。
迭代
默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values()
,如果要同时迭代key和value,可以用for k, v in d.items()
。
Python内置的enumerate
函数可以把一个list变成索引-元素对,这样就可以在for
循环中同时迭代索引和元素本身:
for i, value in enumerate(['A', 'B', 'C']): |
列表生成式
for x in range(1, 11)] [x * x |
运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
import os # 导入os模块,模块的概念后面讲到 |
生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
for x in range(10)] L = [x * x |
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
所以,我们创建了一个generator后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
要把fib
函数变成generator,只需要把print(b)
改为yield b
就可以了:
def fib(max): |
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return
语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()
的时候执行,遇到yield
语句返回,再次执行时从上次返回的yield
语句处继续执行。
闭包
def lazy_sum(*args): |
1, 3, 5, 7, 9) f = lazy_sum( |
返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。
lambda函数
匿名函数lambda x: x * x
实际上就是:
def f(x): |
关键字lambda
表示匿名函数,冒号前面的x
表示函数参数。
装饰器
现在,假设我们要增强now()
函数的功能,比如,在函数调用前后自动打印日志,但又不希望修改now()
函数的定义,这种在代码运行期间动态增加功能的方式,称之为“装饰器”(Decorator)。
本质上,decorator就是一个返回函数的高阶函数。所以,我们要定义一个能打印日志的decorator,可以定义如下:
def log(func): |
观察上面的log
,因为它是一个decorator,所以接受一个函数作为参数,并返回一个函数。我们要借助Python的@语法,把decorator置于函数的定义处:
|
调用now()
函数,不仅会运行now()
函数本身,还会在运行now()
函数前打印一行日志:
now() |
wrapper()
函数的参数定义是(*args, **kw)
,因此,wrapper()
函数可以接受任意参数的调用。在wrapper()
函数内,首先打印日志,再紧接着调用原始函数。
错误处理
try: |
当我们认为某些代码可能会出错时,就可以用try
来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except
语句块,执行完except
后,如果有finally
语句块,则执行finally
语句块,至此,执行完毕。
由于没有错误发生,所以except
语句块不会被执行,但是finally
如果有,则一定会被执行(可以没有finally
语句)。