# torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None) # Down/up samples the input to either the given size or the given scale_factor # The input dimensions are interpreted in the form: mini-batch x channels x [optional depth] x [optional height] x width. # The modes available for resizing are: nearest, linear (3D-only), bilinear, bicubic (4D-only), trilinear (5D-only), area # input (Tensor) – the input tensor # size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]) – output spatial size. # scale_factor (float or Tuple[float]) – multiplier for spatial size. Has to match input size if it is a tuple. # mode (str) – algorithm used for upsampling: 'nearest' | 'linear' | 'bilinear' | 'bicubic' | 'trilinear' | 'area'. Default: 'nearest'